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Abstract. In this paper, we establish the well-posedness of the following system
of two transport equations coupled with a di�usion equation:

∂tµ
1
t +∇ · (v1[µt]µ

1
t ) = N1(t, µt),

∂tµ
2
t −∆µ2

t = N2(t, µt),
∂tµ

3
t +∇ · (v2[µt]µ

3
t ) = N3(t, µt),

in Rd where µ1
t , µ

2
t , µ

3
t are �nite signed measures. Here, the vector �eld v1, v2

and the source term N1, N2, N3 depend on the measure-valued solution vector
µt = (µ1

t , µ
2
t , µ

3
t ).
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1. Introduction

Transport equations appear naturally in physics as they express in mathematical

terms a conservation law. Considering measure-valued solution allows, in particular,

to study in a uni�ed framework discrete as well as continuous dynamics. This explains

why they are ubiquitous in modeling of systems of interacting agents/particles in

many applications including physics, social sciences, and biology (e.g. [3, 8, 9, 10, 14,

48, 49]).

To further motivate the study of a system of transport and di�usion equations on

the space of measures that we undertake in this paper, in what follows we provide some

examples from various area focusing on the modeling aspects. We do not pretend to

list all the possible applications but only to emphasize that measure-valued functions

provide a natural framework to model many phenomena.

When considering n interacting particles at the microscopic level in the mean-�eld

setting, in the sense that each particle is subject to the same mean force from the
1
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other particles, we can write the evolution of the state xi(t) of the i-th particle as

(1)
d

dt
xi(t) =

1

n

n∑
j=1

K(xi(t), xj(t))

where K models the interaction between particles. It is then easy to see that the

empirical measure µnt := 1
n

∑n
i=1 δxi(t) solves, in a weak sense, the transport equation

(2) ∂tµ+∇ · (v[µt]µt) = 0

where the vector-�eld v[µt] is given by v[µt](x) =
∫
Rd K(x, y) dµt(y) and represents

the cumulated in�uence of the whole distribution µt at the point x. As the number

n of particles goes to in�nity, we expect this equation to be the right limit of the mi-

croscopic ODE system. In fact, well-posedness can be proved by standard techniques

- we refer the reader to [6, 9, 19, 25, 36, 37, 48].

More recently this kind of equations proved to be useful in the modeling of some

social processes including formation of opinion. A large group of individuals, each one

of them having an opinion on some given issue, is interacting. The individuals involved

in an interaction modify their opinion following some given mechanism. The goal is

then to analyze the time evolution of the distribution of opinions in the population.

One way of achieving this consists of writing down a Boltzmann-like equation satis�ed

by the distribution of opinions. Assuming that collisions are binary and result in

only a very small change of opinions for each participant, it can be proved that the

long-time behavior of the Boltzmann-like equation can be well approximated by a

transport equation of the form (2). This approach is well-known in statistical physics

and has been adapted to the context of opinion formation process by Toscani [49].

We refer to [3, 39, 40, 41, 44, 45] for examples of theoretical studies of some particular

equations like (2) appearing in this context. We refer to the book [38] for more on

the application and theory of kinetic models in social and economic sciences.

In population biology, the authors in [8, 10, 14, 15, 47] considered equations similar

to (2), in the context of measure-valued solutions, with or without a source term. The

authors in [14, 15, 47] focus their attention on the dynamics of cells aggregation. They

recall that displacement of an individual is not the result of only the application

of forces following the law of mechanics but also depend on the interaction with

the external environment, e.g., other cells or chemical �elds or extracellular matrix

components. Furthermore, in extremely viscous regimes such as those arising in some

biological environments as e.g. cells in highly viscous �uids or in an high cellular

density environment (e.g., phytoplankton cell population in the ocean or a virus

population spreading in the air), Newton equations of motion can be written in the
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overdamped approximation so that the velocity of moving individuals and not their

acceleration is typically proportional to the sensed forces. In that case the movement

of the i-th cell located at xi(t) ∈ Rd at time t can be modeled by an equation similar

to (1) but with an additional term T (ct) accounting for the in�uence of the external

environment:

(3)
d

dt
xi(t) = T [ct](x) +

1

n

n∑
j=1

K(xi(t), xj(t)).

Thinking of ct as the concentration of some chemicals at time t, we can model its

time evolution by a di�usion equation like

(4) ∂tct(x) = ∆ct(x)− dct(x) + S(t, x)

where d > 0 is the degradation (or death/evaporation) rate and S is a source term.

Notice that if the chemicals are secreted by the cells themselves then S should depend

on the distribution µt of the cells at time t. A possible choice is St = bµt for some

birth/production rate b > 0. In such a setting we are naturally led to consider a

coupled system of the form

∂tµt +∇ · (vµt) = 0

∂tct(x) = ∆ct(x)− dct(x) + bµt
(5)

with the vector-�eld

(6) v(t, x) = v[µt, ct](x) = T (ct)(x) +

∫
Rd

K(x, y) dµt(y).

Notice that µt and ct are both measures. This system was considered in [47]. In

that paper the authors developed a numerical scheme for solving this system but the

problem of its well-posedness was left open. The authors in [47] emphasize that the

framework of measure-valued function allows naturally a multiscale analysis inter-

twining the cellular (microscopic) and the multicellular (macroscopic) levels. Indeed

we can write µt as the sum of a continuous part modeling the cellular aggregate as a

continuum and a �nite sum of Dirac masses representing particular cells.

A system with two coupled transport equations for measure-valued solution is also

relevant from the applied point of view. Indeed, the authors in [15] argued that "in

a wide range of pattern formations, characteristic of biological processes, large aggre-

gates of non-specialized inactivated cells are collectively guided by a small number

of specialized and activated individuals [...]. This happens for instance in angiogene-

sis, morphogenesis, and wound healing mechanisms, or in the metastatic in�ltration

of solid tumors". These consideration led them to model the distribution µu of the

aggregate of undi�erentiated cells by a continuous measure and the distribution µd
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of the few di�erentiated cells by a discrete distribution. The time evolution of both

measures µu and µd is then adequately modeled by a system of conservation laws of

the form

∂tµ
d
t +∇ · (vdµdt ) = 0

∂tµ
u
t +∇ · (vuµut ) = 0

(7)

where the vector-�elds vd and vu drive the displacement of the specialized and un-

di�erentiated cells. Notice that the displacement of a di�erentiated cell results from

interaction with other di�erentiated cells as well as interaction with undi�erentiated

cells. The same applies to an undi�erentiated cell. It is thus natural to assume that

vd and vu depends on µd and µu i.e. vd = vd[µdt , µ
u
t ] and v

u = vu[µdt , µ
u
t ].

Notice that a system like (7) also appears in opinion formation process, see, e.g.,

[18, 41]. In these papers the authors model opinion formation in heterogeneous pop-

ulations starting from a system of Boltzmann-like equations which becomes, after a

suitable rescaling of the parameters, a system similar to (7). The long-time behavior

is then investigated either numerically or theoretically.

The goal of this paper is to give a uni�ed treatment for the well-posedness of

systems (5) and (7) described above. We will do so by considering the following

general transport-di�usion system:

∂tµ
1
t +∇ · (v1[µt]µ1

t ) = N1(t, µt),

∂tµ
2
t −∆µ2

t = N2(t, µt)

∂tµ
3
t +∇ · (v2[µt]µ3

t ) = N3(t, µt),

(8)

in Rd where µt = (µ1
t , µ

2
t , µ

3
t ) is a vector of measures. Here, the vector-�elds v1, v2

and the source terms N1, N2, N3 depend on µ. The well-posedness of system (8) will

be the focus of this paper. Here we apply a �xed point argument to establish the

main result. Because of the nonlinearities in the vector �elds and the source terms

this requires the development of techniques to establish novel estimates on auxiliary

linear transport and di�usion problems. These estimates are then utilized to show

that the nonlinear �xed point operator is contractive.

The paper is organized as follows: in Section 2 we present some preliminary mate-

rial. In Section 3 we present a statement of the main result and provide a comparison

between our result and those already available in the literature. Sections 4 and 5 are

devoted to establishing auxiliary results on the well-posedness of a linear di�usion

equation and a linear transport equation in measure spaces, respectively. These re-

sults are used in Section 6 to prove the main theorem of the paper and establish the



SYSTEM OF TRANSPORT AND DIFFUSION EQUATIONS IN MEASURE SPACES 5

well-posedness of the new system (8) proposed here which combines transport and

di�usion equations in measure spaces. In Section 7 we present some corollaries to the

main theorem along with some remarks. Finally, we provide a sketch of the proof of

Proposition 4.1 in the appendix.

2. Preliminaries

We denote by Mb(Rd) the space of �nite signed Borel measures. We will work with

two di�erent norms on Mb(Rd): the Total Variation (TV) norm and the Bounded

Lipschitz (BL) norm. The TV norm ‖µ‖TV of a measure µ ∈Mb(Rd) is

(9) ‖µ‖TV = sup
φ∈Cc(Rd), ‖φ‖∞≤1

∫
Rd

φ dµ = |µ|(Rd).

Here, |µ| = µ+ + µ−, with µ+ and µ− being the positive and negative parts of µ as

given by the Jordan decomposition.

To de�ne the BL norm we �rst need to introduce the space W 1,∞(Rd) consisting

of bounded Lipschitz functions φ, namely φ ∈ W 1,∞(Rd) if φ is bounded and there

exists C > 0 such that

|φ(x)− φ(y)| ≤ C|x− y| for any x, y ∈ Rd.

We denote by Lip(φ) the least admissible constant C. We endow W 1,∞(Rd) with

the norm ‖φ‖W 1,∞ := max{‖φ‖∞, Lip(φ)}. The bounded Lipschitz norm (or Dudley

norm, or Fortet-Mourier norm) ‖µ‖BL of a measure µ ∈Mb(Rd) is then de�ned by

‖µ‖BL = sup
{∫

Rd

φ dµ : φ ∈ W 1,∞(Rd), ‖φ‖W 1,∞ ≤ 1
}
.

This norm is well-studied in probability theory and has also been used to study well-

posedness of transport equations in population biology (e.g., [8]).

Recall that a sequence (µn)n ⊂Mb(Rd) converges weakly to µ ∈Mb(Rd) if
∫
Rd φ dµn →∫

Rd φ dµ for any φ ∈ Cb(Rd), where Cb(Rd) denotes the space of bounded continuous

functions on Rd. It is known that in that case the sequence (µn)n has bounded TV

norm and is also tight in the sense that for any ε > 0 there exists a compact set

K ⊂ Rd such that for any n, |µn|(Rd\K) ≤ ε. (see [20][Thm 4]).

Here it is worth pointing out that the weak convergence and the BL convergence are

not equivalent in general. It is known that if µn → µ weakly then ‖µn − µ‖BL → 0

(see [20][Thm 6]) but the converse is, in general, false if we are not working with

non-negative measures, in which case both convergences are equivalent (see [20][Thm

8]). Indeed, there are sequences converging to 0 in the BL norm but that are neither
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tight nor TV-bounded. Consider for instance µn =
√
n(δn+1/n − δn) ∈ Mb(R). Then

‖µn‖BL =
√
n
n
→ 0 but (µn)n is neither tight nor TV-bounded (since ‖µn‖TV = 2

√
n).

In this paper, unless otherwise speci�ed, we will always endow Mb(Rd) with the

BL-norm. We recall that the space Mb(Rd) is complete when endowed with the TV

norm but not with the BL norm. However a subspace of the form

(10) Mb,R(Rd) := {µ ∈Mb(Rd) : ‖µ‖TV = |µ|(Rd) ≤ R},

where R > 0, is complete when endowed with the BL norm (see e.g. Thm 2.7 in [27]).

We recall that the push-forward of µ ∈Mb(Rd) through a Borel measurable map f :

Rd → Rd is the measure f#µ de�ned on Borel sets B ⊂ Rd by f#µ(B) = µ(f−1(B)).

It can be easily veri�ed that (f#µ, φ) = (µ, φ ◦ f), where (µ, φ) =
∫
Rd φ dµ denotes

the natural pairing between measures µ ∈Mb(Rd) and bounded measurable functions

φ.

3. The Main Result

We consider the well-posedness of system (8) with an initial condition µ0 = (µ1
0, µ

2
0, µ

3
0) ∈

Mb(Rd)3. This system is a particular example of systems of transport and di�usion

equations in the space of measures that can be considered. Indeed, we could have

also considered systems where µ2 satis�es a transport equation or where µ3 satis�es a

di�usion equation. It will be clear from the proof that our result of well-posedness for

the particular system (8) holds with similar assumptions in the case of the other sys-

tems of coupled transport and di�usion equations in the space of measures mentioned

above.

Let us now state our assumptions on the vector-�elds vi, i = 1, 2, and the source

terms Nk, k = 1, 2, 3. We assume that the vector-�elds

v1, v2 : Mb(Rd)3 → W 1,∞(Rd)

are continuous from Mb(Rd)3 to L∞(Rd) and for any R > 0 there exist constants

LvR, C
v
R > 0 such that for any µ, µ̃ ∈ Mb,R(Rd)3 and any i = 1, 2, the following is

satis�ed:

(V1) ‖vi[µ]− vi[µ̃]‖∞ ≤ LvR‖µ− µ̃‖BL,
(V2) ‖vi[µ]‖W 1,∞ ≤ Cv

R.

We assume that the source terms

Nk : R+ ×Mb(Rd)3 →Mb(Rd) k = 1, 2, 3,
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are continuous in (t, µ) (recall that we endow Mb(Rd) with the BL norm) and that

for any R > 0, there exist constants LNR , C
N
R > 0 such that for any t ∈ R, any

µ, µ̃ ∈Mb,R(Rd)3 and any k = 1, 2, 3, the following is satis�ed:

(N1) ‖Nk(t, µ)−Nk(t, µ̃)‖BL ≤ LNR‖µ− µ̃‖BL,
(N2) ‖Nk(t, µ)‖TV ≤ CN

R .

For T > 0 denote,

MT = {µ ∈ C([0, T ],Mb(Rd)3) with µ2 ∈ L1((0, T )× Rd)}.

We state the de�nition of weak solution of system (8):

De�nition 3.1. We say µ ∈ MT is a solution of system (8) on [0, T ] with initial

condition µ0 ∈ Mb(Rd)3 if sup0≤t≤T ‖µt‖TV < ∞ and for every φ = (φ1, φ2, φ3) ∈
C1
c ([0, T ]×Rd)×C2

c ([0, T ]×Rd)×C1
c ([0, T ]×Rd), the following equations are satis�ed

for any t ∈ [0, T ]:

∫
Rd

φ1(t, x)dµ1
t (x)−

∫
Rd

φ1(0, x)dµ1
0(x)

=

∫ t

0

∫
Rd

(∂tφ
1(s, x) + v1[µs](x)∇φ1(s, x))dµ1

s(x)ds+

∫ t

0

∫
Rd

φ1(s, x)dN1(s, µs)(x)ds,∫
Rd

φ2(t, x)dµ2
t (x)−

∫
Rd

φ2(0, x)dµ2
0(x)

=

∫ t

0

∫
Rd

(∂tφ
2(s, x) + ∆φ2(s, x))dµ2

s(x)ds+

∫ t

0

∫
Rd

φ2(s, x)dN2(s, µs)(x)ds,∫
Rd

φ3(t, x)dµ3
t (x)−

∫
Rd

φ3(0, x)dµ3
0(x)

=

∫ t

0

∫
Rd

(∂tφ
3(s, x) + v2[µs](x)∇φ3(s, x))dµ3

s(x)ds+

∫ t

0

∫
Rd

φ3(s, x)dN3(s, µs)(x)ds.

(11)

We now state the following result on the well-posedness of system (8):

Theorem 3.1. For any initial condition µ0 ∈ Mb(Rd)3 there exists T ∗ and a unique

solution µ ∈ MT , T < T ∗, with T ∗ < ∞ i� limt→T ∗, t<T ∗ ‖µt‖TV = ∞. Furthermore,

this solution is continuous with respect to the initial condition in the following sense:

Let µ, µ̃ be two solutions de�ned on [0, T ] corresponding to initial conditions µ0 and

µ̃0, respectively, and assume that

‖µt‖TV , ‖µ̃t‖TV ≤ R for t ∈ [0, T ].

Then

(12) ‖µt − µ̃t‖BL ≤ r(t)‖µ0 − µ̃0‖BL,
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where r(t) is a continuous non-decreasing function depending only on LvR, C
v
R, L

N
R , C

N
R

and satisfying r(0) = 1.

We end this section with a comparison between our result and previous results

concerning the well-posedness in the space of measures of a single transport equation

or a system of transport equations. Concerning the case of a single transport equation

of the form

(13) ∂tµt +∇ · (v[µt]µt) = N(t, µt),

we refer to the papers [8, 10, 22, 23, 27, 28, 35, 42]. The authors in [8] established the

well-posedness of (13) with a general source term satisfying the same assumptions as

ours and a vector-�eld v = v(x) independent of µt. The need for such a source term

is illustrated by various examples in population dynamics including the well studied

selection-mutation models (e.g., [1, 13]). On the other hand the authors in [42] studied

(13) with a general vector-�eld satisfying assumptions similar to ours in spirit (though

assumption (V1) is stated with a generalized Wasserstein distance W a,b
p introduced

by the authors which is equivalent to the BL distance when p = 1 (see [43])). The

source term N = N(µ) they consider is required to satisfy assumptions similar to

(N1)-(N2). They also require N(µ), µ ∈ Mb(Rd), to be absolutely continuous with

respect to the Lebesgue measure and be supported in a given ball B0(R), for a �xed

R > 0 independent of µ. This assumption, which is stronger than ours, is motivated

by applications in the modeling of pedestrian �ows and useful for the constructive

proof they develop which is based on an Euler scheme similar to the standard Euler

scheme applied for ODEs. In [22, 23] the authors study the existence-uniqueness

of mild solutions to a transport equation with a linear source term. In [22] they

consider a given vector �eld independent of the solution similar to [8] while in [23]

they extend the results to a vector �eld that depends on the solution. The author in

[35] consider, as a particular case of a whole theory of ordinary di�erential equations

in metric spaces, equations like (13) with a general vector-�eld v[t, µ] and a special

form source term N(t, µ) = N̄(t, µ)µ which is important from the point of view of

biological applications (we also consider this form of source term in (39) below).

Under assumptions on v and N̄ similar to ours, existence and uniqueness of solutions

are proved.

In [27] and [28] the authors study a size-structured population model of the form

∂tµt + ∂x(F2(t, µt)µt) = F3(t, µt)µt in R+ × [0, T ],

F2(t, µt)(0)µt(0) =

∫ +∞

0

F1(t, µt)(x) dµt(x) in (0, T ].
(14)
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In our framework, this corresponds to taking the velocity �eld v[t, µ] = F2(t, µt) and

the source termN(t, µ) = F3(t, µ)µ+F [t, µ]δx=0 with F [t, µ] :=
∫ +∞
0

F1(t, µ)(x) dµ(x).

The authors in [27] and [28] establish the well-posedness of (14) using two di�erent

proofs under assumptions compatible with ours. Continuity of the solution with re-

spect to F1, F2 and F3 is also proved, an issue we do not consider in this paper.

Concerning a system of transport equation, we mention [16], [24] and [50]. The

authors in [16] establish the well-posedness of a system of transport equations with-

out source terms and with measure-dependent vector-�elds of the form v[µ](t, x) =

V (t, x, η ∗ µ) where V (t, x, r) is globally bounded and Lipschitz in (x, r) uniformly in

t, and η(t, x) is globally bounded and Lipschitz in x uniformly in t. So, except for

the time dependence, this v satis�es assumptions (V1)-(V2). The result in [24] falls

under those in [16] but the method of proof is di�erent and based on gradient �ows

in Wasserstein space. Finally, the author in [50] considers a two-sex model described

by a system of coupled age-structured equations (of similar form to (14) but with

F2 ≡ 1) and establishes its well-posedness under assumptions implying ours.

4. Well-posedness for linear diffusion equation in measure spaces

We now give a preliminary result on the solution of the linear heat equation with

measure data. In particular, we consider the equation

∂tu−∆u = σ in (0,+∞)× Rd

u|t=0 = u0,
(15)

where u0 ∈Mb(Rd) and σ ∈Mb(Q) where Q = (0,+∞)×Rd. We letQT = (0, T )×Rd,

T > 0.

We understand this equation in the following sense: a function u is a solution if

u ∈ L1(QT ) for any T > 0 and if for any φ ∈ C1,2
c ([0,+∞)×Rd) the following holds:

(16)

∫∫
Q

(∂t + ∆)φ(t, x) u(t, x)dtdx+

∫
Rd

φ(0, x) du0(x) +

∫∫
Q

φ dσ = 0.

Here, φ ∈ C1,2
c ([0,+∞)×Rd) means that (i) φ(·, x) is C1 (continuously di�erentiable)

for any x ∈ Rd, (ii) φ(t, ·) is C2 (twice-continuously di�erentiable) for any t ≥ 0 and

(iii) φ has a compact support.

We denote by K(t, x) = (4πt)−d/2 exp(−|x|2/(4t)) the heat kernel and by Pt the

associated semi-group given by Ptµ(x) = (K(t, ·) ∗ µ)(x).
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The following result is most probably known but we could not �nd an explicit

reference. So for the reader's convenience, we include in the Appendix a short sketch

of the proof.

Proposition 4.1. For any u0 ∈ Mb(Rd) and any σ ∈ Mb(Q) there exists a unique

solution to (15) which is given explicitly by

(17) u(t, x) = (Ptu0)(x) + (K ∗ σ)(t, x).

Moreover, the map t′ → u(t′, x)dx is continuous from [0,+∞) to Mb(Rd) in the weak

convergence (against test-functions in Cb(Rd)), and thus also in the BL-norm, at any

t such that |σ|({t} × Rd) = 0.

Remark 4.1. We prove in fact that the solution u given by (17) veri�es a slightly

stronger statement than (16) namely that for any t > 0, and any φ ∈ C1,2
c ([0,+∞)×

Rd), ∫
Rd

φ(t, x)u(t, x) dx−
∫
Rd

φ(0, x)u0(x) dx

=

∫ t

0

∫
Rd

(∂t + ∆)φ(t, x) u(t, x)dtdx+

∫ t

0

∫
Rd

φ dσ.

(18)

Here, we will mainly be interested in the case where σ has the following special

form

(19) σ =

∫ T

0

δs ⊗ σ̃s ds

for some T > 0 and σ̃ : [0, T ] → Mb(Rd). Here δs ⊗ σ̃s denotes the product measure

on Q de�ned for any φ ∈ Cb(Q) by (δs ⊗ σ̃s, φ) =
∫
φ(s, x) dσ̃s(x), and (19) means

that

(20)

∫
Q

φ dσ :=

∫ T

0

∫
Rd

φ(s, x) dσ̃s(x) ds for any φ ∈ Cb(Q).

We now have the following corollary for this special case.

Corollary 4.1. Let σ̃ : [0, T ]→ Mb(Rd) be continuous in the BL norm and bounded

in the TV norm, i.e., ‖σ̃s‖TV ≤ R for any s ∈ [0, T ]. Then the integral in (19) is a

Bochner integral in Mb([0, T ]× Rd), the completion of Mb([0, T ]× Rd) under the BL

norm. Moreover, ‖σ‖TV ≤ RT ,

(21) (σ, φ) =

∫ T

0

(σ̂s, φ(s, ·)) ds for any φ ∈ L∞([0, T ]× Rd),

and

(22) |σ|({t} × Rd) = 0 for any t ∈ [0, T ].
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Furthermore, for any initial condition u0 ∈ Mb(Rd) there exists a unique solution

to (15) in L1((0, T )× Rd) which is given explicitly by

u(t, x) = (Ptu0)(x) +

∫ t

0

∫
Rd

K(t− s, x− y) dσ̃s(x)ds,

and the map t→ u(t, x)dx is continuous from [0, T ] toMb(Rd) in the weak convergence

and thus also in the BL-norm.

Remark 4.2. It follows from Remark 4.1 that for any t > 0, and any φ ∈ C2
c ([0,+∞)×

Rd),

(23)

∫
Rd

φ(t, x)u(t, x) dx−
∫
Rd

φ(0, x)u0(x) dx

=

∫ t

0

∫
Rd

(∂t + ∆)φ(t, x) u(t, x)dtdx+

∫ t

0

∫
Rd

φ(s, x) dσ̃(s, x)ds.

Proof of Corollary 4.1. Consider the measure σ̂s on [0, T ]×Rd given by σ̂s = δs⊗ σ̃s,
i.e.,

∫
[0,T ]×Rd φ dσ̂s =

∫
Rd φ(s, x) dσ̃s(x) for φ ∈ Cb([0, T ]× Rd). Notice that ‖σ̂s‖BL =

‖σ̃s‖BL, ‖σ̂s‖TV = ‖σ̃s‖TV ≤ R, and σ̂s is continuous in s in the BL norm. Indeed,

for any φ ∈ W 1,∞([0, T ]× Rd), we have

|
∫
[0,T ]×Rd

φ(s, x) dσ̂s(x)−
∫
[0,T ]×Rd

φ(s, x) dσ̂t(x)|

≤
∫
[0,T ]×Rd

|φ(s, x)− φ(t, x)| d|σ̃s|(x) + |
∫
[0,T ]×Rd

φ(t, x) d(σ̃s − σ̃t)(x)|

≤ Lip(φ)(|s− t|R + ‖σ̃s − σ̃t‖BL).

Hence, we obtain

‖σ̂s − σ̂t‖BL ≤ Lip(φ)(|s− t|R + ‖σ̃s − σ̃t‖BL

which goes to 0 as s→ t.

Denote by Mb([0, T ]× Rd) the completion of Mb([0, T ]× Rd) under the BL norm.

We will verify that the integral σ :=
∫ T
0
σ̂s ds is well-de�ned as a Bochner integral of

Mb([0, T ]× Rd)-valued functions.

According to [17][Thm 2], we have to prove that (i)
∫ T
0
‖σ̂s‖BL ds <∞, and that (ii)

the map s → σ̂s is strongly-measurable (i.e., it is the limit a.e. of simple functions).

Point (i) is easy because the map s → ‖σ̂‖BL is continuous (and thus measurable)

and bounded by ‖σ̂‖TV ≤ R. Concerning point (ii) we use [22][Appendix C1] which

states that (ii) is equivalent to proving that for every φ ∈ L∞([0, T ] × Rd) the map

F (s) :=
∫
φ dσ̂s is measurable. Let φε := φ ∗ ρε where ρε are the standard molli�ers.

Then φε → φ in L∞loc([0, T ]×Rd) and φε is bounded Lipschitz for any ε with ‖φε‖∞ ≤
‖φ‖∞. It follows that Fε(s) :=

∫
φε dσ̂s is continuous in s (for a �xed ε). Moreover,
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since for any s, the measure σ̂s is tight, we have that Fε(s)→ F (s) as ε→ 0. Thus,

F is measurable as a pointwise limit of continuous functions. Another possibility to

prove (ii) would be to notice that Mb([0, T ] × Rd) is separable so that the strong-

measurability is equivalent to the weak measurability (see [17][Thm 2]), i.e., the map

s → (ψ, σ̃s) is measurable for any ψ ∈ Mb([0, T ] × Rd)′, the dual of Mb([0, T ] × Rd).

Then use [31][Thm 7] which states that the dual of Mb([0, T ] × Rd) is isometrically

isomorphic to W 1,∞([0, T ]× Rd) by S(ψ)(x) := ψ(δx).

According to [17][Cor.8],
∫ T
0
σ̂s

ds
T

belongs to the closure (in the BL norm) of the

convex hull of {σ̂s}0≤s≤T . Since σ̂s ∈ Mb,R([0, T ] × Rd) for any 0 ≤ s ≤ T and

Mb,R([0, T ]×Rd) is convex and closed under the BL norm, we deduce that
∫ T
0
σ̂s

ds
T
∈

Mb,R([0, T ]× Rd) and then that
∫ T
0
σ̂s ds ∈Mb,RT ([0, T ]× Rd).

Given φ ∈ W 1,∞([0, T ]×Rd) the expression F (µ) :=
∫
[0,T ]×Rd φ dµ de�nes a bounded

linear form onMb([0, T ]×Rd). Thus by [17][Thm 6] we have F (
∫ T
0
σ̂s ds) =

∫ T
0

(F, σ̂s) ds,

i.e.,

(σ, φ) =

∫ T

0

(σ̂s, φ) ds φ bounded Lipschitz.

On the other hand consider ν : φ ∈ Cb([0, T ] × Rd) →
∫ T
0

(σ̂s, φ) ds. This is well-

de�ned because we already saw that the integrand is measurable in s and is bounded

in absolute value by ‖φ‖∞R. Thus, ν is a bounded linear form on Cb([0, T ] × Rd),

i.e., a bounded measure. In particular, ν(E) =
∫ T
0
σ̂s(E) ds for any E ⊂ Rd Borel.

Then the measures ν and σ coincide on the bounded Lipschitz functions. It follows

from [20][Lemma 6] that they are equal as measures. Thus,

(σ, φ) =

∫ T

0

(σ̂s, φ) ds φ ∈ L∞(Rd).

In particular, let φ = 1(t−δ,t+δ), then

|σ|((t− δ, t+ δ)× Rd) ≤
∫ t+δ

t−δ
|σ̃s|(Rd) ds ≤ 2Rδ.

Letting δ → 0 we obtain (22). The last part of this corollary is a direct consequence

of Proposition 4.1. �

5. Well-posedness of linear transport equation in measure space

Given T > 0, we consider the equation

∂tµt +∇ · (b(t, x)µt) = σt 0 < t ≤ T,

µ|t=0 = µ0,
(24)
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where b(t, ·) is a vector-�eld and σt ∈ Mb(Rd). When b = b(x) this equation has

been studied in [8] when the right-hand side can depend on µt. Here, we adapt their

framework to the case of time-dependent vector-�elds. This is an improvement that

will be needed to study the well-posedness of the general system (8).

We say that µ is a solution on [0, T ] if µ : [0, T ]→Mb(Rd) is continuous in the BL

norm and bounded in the TV norm, i.e., sup0≤t≤T ‖µt‖TV < ∞, µ|t=0 = µ0, and for

any 0 < t ≤ T ,

(25)
d

dt

∫
Rd

φ dµt =

∫
Rd

b(t, x)∇φ(x) dµt +

∫
Rd

φ dσt φ ∈ C1
c (Rd).

Notice that we can equivalently replace (25) by either

(26)∫
Rd

φ dµt −
∫
Rd

φ dµ0 =

∫ t

0

∫
Rd

b(s, x)∇φ(x) dµs ds+

∫ t

0

∫
Rd

φ dσs ds φ ∈ C1
c (Rd),

or, for any φ ∈ C1
c ([0, T ]× Rd),∫

Rd

φ(t, x) dµt(x)−
∫
Rd

φ(0, x) dµ0(x)

=

∫ t

0

∫
Rd

∂tφ(s, x) + b(s, x)∇φ(s, x) dµs ds+

∫ t

0

∫
Rd

φ(s, x) dσs(x) ds,

(27)

this last formulation being the one used in De�nition 3.1.

We denote by Ts,t the �ow associated with b(t, x), namely, for any x ∈ Rd, Ts,t(x)

satis�es

d

dt
Ts,t(x) = b(t, Ts,t(x)),

Ts,s(x) = x,

and for simplicity of notation we let Tt := T0,t.

To assure the global existence of Ts,t, we assume for simplicity that b is continuous

in (t, x) and globally Lipschitz in x uniformly in t, i.e., there exists a constant Lb > 0

such that

(28) |b(t, x)− b(t, x′)| ≤ Lb|x− x′| for any t ∈ [0, T ] and any x, x′ ∈ Rd.

Then Ts,t is well-de�ned in Rd for any T ≥ t ≥ s ≥ 0.

Proposition 5.1. Assume that b is continuous, bounded (i.e. there exists a constant

Cb > 0 such that |b(t, x)| ≤ Cb for any t ∈ [0, T ] and x ∈ Rd), and that b satis�es

(28). Consider σ ∈ C([0, T ],M(Rd)) such that sup0≤t≤T ‖σt‖TV <∞. Then, for any

initial condition µ0 ∈ Mb(Rd), equation (24) has a unique solution which is de�ned
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on [0, T ] and is given explicitly by

(29) µt = Tt]µ0 +

∫ t

0

Ts,t]σs ds.

Proof. Uniqueness is easy since it is known that for any t > 0 the zero function is the

only solution to (24) with µ0 = 0 and σt = 0 (see e.g. [51]). We thus have to prove

that µ given by (29) is well-de�ned and is a solution.

Notice that for any t > 0, the expression
∫ t
0
Ts,t]σs ds de�nes a bounded measure

in Rd. Indeed for any φ ∈ C(Rd), ‖φ‖∞ ≤ 1, we have

|(Ts,t]σs, φ)| = |(σs, φ ◦ Ts,t)| ≤ ‖σs‖TV ‖φ ◦ Ts,t‖∞ ≤ Rσ

where Rσ := supt≥0 ‖σt‖TV , so that ‖Ts,t]σs‖TV ≤ Rσ. Moreover, the measures Ts,t]σs
are continuous in s for the BL norm. Indeed, for φ ∈ W 1,∞(Rd) with ‖φ‖W 1,∞ ≤ 1,

we have∣∣∣(Ts,t]σs, φ)− (Ts′,t]σs′ , φ)
∣∣∣ =

∣∣∣ ∫
Rd

φ(Ts,t(x)) dσs(x)−
∫
Rd

φ(Ts′,t(x)) dσs′(x)
∣∣∣

≤
∫
Rd

|Ts,t(x)− Ts′,t(x)| dσs(x) + ‖φ ◦ Ts′,t‖W 1,∞‖σs − σs′‖BL.

Independently it is easily seen that Lip(Ts,t) ≤ eL
b|t−s| and then

|Ts,t(x)− Ts′,t(x)| = |Ts,t(x)− Ts,t(Ts′,s(x))| ≤ eL
b|t−s||x− Ts′,s(x)|

≤ LbeL
b|t−s||s− s′|.

Taking the supremum over all such φ, we obtain∥∥∥Ts,t]σs − Ts′,t]σs′∥∥∥
BL
≤ LbeL

b|t−s||s− s′|Rσ + eL
b|t−s′|‖σs − σs′‖BL,

which goes to 0 as s′ → s.

It is now easily seen by adapting the proof of Corollary 4.1 that
∫ t
0
Ts,t]σs ds is a

Bochner integral de�ning a bounded measure on Rd with total variation less than tRσ

and satis�es

(

∫ t

0

Ts,t]σs ds, φ) =

∫ t

0

(Ts,t]σs, φ) ds =

∫ t

0

(σs, φ ◦ Ts,t) ds

for any φ ∈ L∞(Rd).

We verify that µ de�ned by (29) is continuous in t. For t′, t and φ ∈ W 1,∞(Rd)

with ‖φ‖W 1,∞ ≤ 1, we have

(µt′ − µt, φ) =

∫
Rd

φ(Tt′(x))− φ(Tt(x)) dµ0(x) +

∫ t′

t

(σs, φ ◦ Ts,t′) ds

+

∫ t

0

(σs, φ ◦ Ts,t′ − φ ◦ Ts,t) ds.
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Since φ is 1-Lipschitz and |(σs, φ ◦ Ts,t′)| ≤ ‖σs‖TV ‖φ ◦ Ts,t′‖∞ ≤ Rσ, we have

|(µt′ − µt, φ)| ≤
∫
Rd

|Tt′(x))− Tt(x)| d|µ0|(x) + |t′ − t|Rσ

+

∫ t

0

∫
Rd

|Ts,t′(x)− Ts,t(x)| d|σs|(x) ds.

Taking the supremum over all φ using that

|Ts,t′(x)− Ts,t(x)| ≤
∫ t′

t

|b(τ, Ts,τ (x))| dτ ≤ Lb(t′ − t)(30)

we obtain

‖µt′ − µt‖BL ≤ |t′ − t|(Lb|µ0|(Rd) +Rσ + tRσL
b)

which goes to 0 as t′ → t.

Next, we verify that (25) holds. Given φ ∈ C1
c (Rd), we have∫

Rd

φ dµt =

∫
Rd

φ(Tt(x)) dµ0 +

∫ t

0

∫
Rd

φ(Ts,t(x)) dσs(x) ds.

Notice that
∫
Rd φ(Ts,t(x)) dσs(x) is continuous in s. To see this we �rst write

|
∫
Rd

φ(Ts,t(x)) dσs(x)−
∫
Rd

φ(Ts′,t(x)) dσs′(x)|

= |
∫
Rd

φ(Ts,t(x))− φ(Ts′,t(x)) dσs(x) +

∫
Rd

φ(Ts′,t(x)) d(σs − σs′)(x)|

≤
∫
Rd

|Ts,t(x))− Ts′,t(x)| d|σs|(x) + ‖φ ◦ Ts′,t‖W 1,∞‖σs′ − σs‖BL.

Then,

|
∫
Rd

φ(Ts,t(x)) dσs(x)−
∫
Rd

φ(Ts′,t(x)) dσs′(x)|

≤ RσL
beL

b|t−s||s− s′|+ eL
b|t−s|‖σs′ − σs‖BL,

from which we deduce the continuity in s recalling that σs is continuous in s. Hence,

d

dt

∫
Rd

φ dµt =

∫
Rd

∇φ(x)b(t, x) d(Tt]µ0) +

∫
Rd

φ(Tt,t(x)) dσt(x)

+

∫ t

0

∫
Rd

∇φ(x)b(t, x) d(Ts,t]σs)(s) ds

=

∫
Rd

φ(x) dσt(x) +

∫
Rd

∇φ(x)b(t, x) dµt(x)

which is (25). �

Remark 5.1. We assumed that b is globally bounded and globally Lipschitz to obtain

existence of a global solution and also because we have a priori no control on the

size of the support of µ0 and σs. If we assume that µ0 and σs are all supported

in some compact set in Rd, then we may only assume that b is locally bounded and
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locally Lipschitz but in that case we will only have a priori existence of a local in time

solution.

6. Well-posedness for the full system: proof of Theorem 3.1

In this section we prove the well-posedness of the system (8) given by

∂tµ
1
t +∇ · (v1[µt]µ1

t ) = N1(t, µt),

∂tµ
2
t = ∆µ2

t +N2(t, µt),

∂tµ
3
t +∇ · (v2[µt]µ3

t ) = N3(t, µt),

(31)

where µt = (µ1
t , µ

2
t , µ

3
t ) ∈ (Mb(Rd))3 and µ2

t ∈ L1(Rd). We let ‖µt‖BL =
∑3

k=1 ‖µkt ‖BL
and ‖µt‖TV =

∑3
k=1 ‖µkt ‖TV .

Notice that if µ ∈ MT is a solution then the maps t ∈ [0, T ] → Nk(t, µt) ∈
Mb(Rd), k = 1, 2, 3, are continuous and, since sup0≤t≤T ‖µkt ‖TV <∞, the vector-�elds

bk(t, x) := vk[µt](x), k = 1, 2, are globally Lipschitz in x uniformly in t by (V 2). Then

according to Corollary 4.1 (here we use that µ2 ∈ L1((0, T ) × Rd)) and Proposition

5.1, µ must be a �xed-point of the map Γ(µ) = (Γ1(µ),Γ2(µ),Γ3(µ)) de�ned by

Γ1(µ)t = T v
1[µ]

t ]µ1
0 +

∫ t

0

T v
1[µ]

s,t ]N1(s, µs) ds,

Γ2(µ)t = Ptµ
2
0 +

∫ t

0

Pt−sN
2(s, µs) ds,

Γ3(µ)t = T v
2[µ]

t ]µ3
0 +

∫ t

0

T v
2[µ]

s,t ]N3(s, µs) ds.

Conversely, if µ ∈ C([0, T ],Mb(Rd)3) is a �xed-point of Γ such that sup0≤t≤T ‖µt‖TV <
∞ then µ is a solution. Then the vector-�elds bk(t, x) := vk[µt](x) is bounded by (V2)

and is also continuous in (t, x) and globally Lipschitz in x uniformly in t ∈ [0, T ] since

|bk(t, x)− bk(t′, x′)| ≤ |vk[µt](x)− vk[µt′ ](x)|+ |vk[µt′ ](x)− vk[µt′ ](x′)|

≤ LvR‖µt − µt′‖BL + Cv
R|x− x′|.

Moreover σ̃kt := Nk(t, µt) is a sequence of measures bounded in TV-norm by (N2)

and is also continuous in t for the weak convergence since Nk is continuous in (t, µ).

We can then rewrite the equality µt = Γ(µ)t as

µ1
t = T b1t ]µ1

0 +

∫ t

0

T b1s,t ]σ̃1
s ds,

µ2
t = Ptµ

2
0 +

∫ t

0

Pt−sσ̃
2
s ds,

µ3
t = T b2t ]µ3

0 +

∫ t

0

T b2s,t ]σ̃3
s ds.
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It then follows from Corollary 4.1 and Proposition 5.1 that µ is a solution in the

sense of De�nition 3.1. Notice that Γ2(µ) belongs to L1((0, T ) × Rd) so that µ2 ∈
L1((0, T )× Rd).

We thus have to prove that Γ has a unique �xed point in the space

X = {µ ∈ C([0, T ],Mb(Rd)3) : µ|t=0 = µ0, ‖µt‖TV ≤ 2‖µ0‖TV ∀t ∈ [0, T ]}(32)

for a given positive T . HereX is endowed with the sup-norm ‖µ‖X := max0≤t≤T ‖µt‖BL
and hence is complete.

We �rst prove some properties of Γ.

Lemma 6.1. If µ ∈ C([0, T ],Mb(Rd)3) is such that sup0≤t≤T ‖µt‖TV < ∞, then

Γ(µ) ∈ C([0, T ],Mb(Rd)3).

Proof. We need to show that each component Γk(µ) is continuous in t. We begin by

proving this for the case k = 1. To this end, let b(t, x) := v[µt](x) and σt := N1(t, µt).

Then σ is continuous in t and sup0≤t≤T ‖σt‖TV <∞ since N1 satis�es (N2). Moreover,

b is bounded and globally Lipschitz in x uniformly in t since v1 satis�es (V2), and

continuous in (t, x) since

|b(t, x)− b(t′, x′)| ≤ |v1[µt](x)− v1[µt′ ](x)|+ |v1[µt′ ](x)− v1[µt′ ](x′)|

≤ LvR‖µt − µt′‖BL + Cv
R|x− x′|

where R := sup0≤t≤T ‖µt‖TV . Therefore, the continuity of Γ1(µ) then follows from

the proof of Proposition 5.1. The continuity of Γ3(µ) is proved in a similar manner.

Concerning the continuity of Γ2(µ), we let σt = N2(t, µt). Then as before σ is

continuous in t and sup0≤t≤T ‖σt‖TV < ∞. The result then follows from Corollary

4.1. �

Lemma 6.2. Let µ, µ̃ ∈ C([0, T ],Mb(Rd)3) and R > 0 such that ‖µt‖TV , ‖µ̃t‖TV ≤ R

for any 0 ≤ t ≤ T . Then

‖T v[µ]s,t − T
v[µ]
s,t′ ‖∞ ≤ Cv

R|t′ − t|, Lip(T v[µ]s,t ) ≤ eC
v
R|t−s|,(33)

and

(34) ‖T v[µ]s,t − T
v[µ̃]
s,t ‖∞ ≤ LvRe

Cv
R|t−s|

∫ t

s

‖µτ − µ̃τ‖BL dτ.
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Proof. The proofs of (33) and (34) are standard and similar. Let us prove (34). We

denote v(t, x) = v[µt](x), ṽ(t, x) = v[µ̃t](x), Ts,t := T v[µ]s,t and T̃s,t := T v[µ̃]s,t . First

Ts,t(x)− T̃s,t(x) =

∫ t

s

v(τ, Ts,τ (x))− ṽ(τ, T̃s,τ (x)) dτ

=

∫ t

s

v(τ, Ts,τ (x))− ṽ(τ, Ts,τ (x)) dτ +

∫ t

s

ṽ(τ, Ts,τ (x))− ṽ(τ, T̃s,τ (x)) dτ.

Then by (V1) and (V2),

|Ts,t(x)− T̃s,t(x)| ≤ LvR

∫ t

s

‖µτ − µ̃τ‖BL + Cv
R

∫ t

s

|Ts,τ (x)− T̃s,τ (x)| dτ.

The result now follows from Gronwall's lemma. �

Lemma 6.3. Given R > 0, consider µ, µ̃ ∈ C([0, T ],Mb,R(Rd)3) with initial condi-

tions µ0 and µ̃0. Then

(35) ‖Γ(µ)t − Γ(µ̃)t‖BL ≤ AR

∫ t

0

‖µs − µ̃s‖BL ds+ eC
v
Rt‖µ0 − µ̃0‖BL,

where AR = 2eC
v
Rt(LvR‖µ0‖TV +

CN
R L

v
R

Cv
R

+ LNR ) + LNR .

Proof. We denote T 1
s,t := T v

1[µ]
s,t , T̃ 1

s,t := T v
1[µ̃]

s,t . Given φ ∈ W 1,∞(Rd), ‖φ‖W 1,∞ ≤ 1,

we have

|(Γ1(µ)t − Γ1(µ̃)t, φ)|

≤ |(µ1
0, φ ◦ T 1

t − φ ◦ T̃ 1
t )|+ |(µ1

0 − µ̃1
0, φ ◦ T̃ 1

t )|+
∫ t

0

|(N1(s, µs), φ ◦ T 1
s,t − φ ◦ T̃s,t)| ds

+

∫ t

0

|(N1(s, µs)−N1(s, µ̃s), φ ◦ T̃ 1
s,t)| ds

=: I1 + I2 + I3 + I4.

We estimate Ik, k = 1, .., 4, as follows. First in view of (34)

|I1| ≤
∫
Rd

|T 1
t (x)− T̃ 1

t (x)| d|µ1
0|(x) ≤ LvRe

Cv
Rt‖µ1

0‖TV
∫ t

0

‖µτ − µ̃τ‖BL dτ,

|I3| ≤
∫ t

0

∫
Rd

|T 1
s,t(x)− T̃ 1

s,t(x)| d|N1(s, µs)|(x) ds

≤
∫ t

0

‖N1(s, µs)‖TVLvReC
v
R(t−s)

∫ t

s

‖µτ − µ̃τ‖BL dτ ds

≤ CN
R L

v
R

Cv
R

(eC
v
Rt − 1)

∫ t

0

‖µτ − µ̃τ‖BL dτ.

Independently (33) gives Lip(φ ◦ T̃ 1
s,t) ≤ Lip(φ)Lip(T̃ 1

s,t) ≤ eC
v
R|t−s| so that ‖φ ◦

T̃ 1
s,t‖W 1,∞ ≤ max{‖φ‖∞, Lip(φ ◦ T̃ 1

s,t)) ≤ eC
v
R|t−s|. It follows that

I2 ≤ ‖µ1
0 − µ̃1

0‖BL‖φ ◦ T̃ 1
t ‖W 1,∞ ≤ eC

v
Rt‖µ1

0 − µ̃1
0‖BL.
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and also using (N1),

I4 ≤ LNR

∫ t

0

eC
v
R(t−s)‖µs − µ̃s‖BL ds ≤ LNR e

Cv
Rt

∫ t

0

‖µs − µ̃s‖BL ds.

It follows that

‖Γ1(µ)t − Γ1(µ̃)t‖BL ≤ eC
v
Rt(LvR‖µ1

0‖TV +
CN
R L

v
R

Cv
R

+ LNR )

∫ t

0

‖µs − µ̃s‖BL ds

+eC
v
Rt‖µ1

0 − µ̃1
0‖BL.

The same estimate holds for ‖Γ3(µ)t − Γ3(µ̃)t‖BL replacing µ1
0, µ̃

1
0 by µ

3
0, µ̃

3
0.

Concerning Γ2 we write

(Γ2(µ)t − Γ2(µ̃)t, φ) = (Pt(µ
2
0 − µ̃2

0), φ) +

∫ t

0

(Pt−s(N
2(s, µs)−N2(s, µ̃s)), φ) ds

= (µ2
0 − µ̃2

0, Ptφ) +

∫ t

0

(N2(s, µs)−N2(s, µ̃s)), Pt−sφ) ds

and then

|(Γ2(µ)t − Γ2(µ̃)t, φ)| ≤ ‖µ2
0 − µ̃2

0‖BL‖Ptφ‖W 1,∞

+

∫ t

0

‖N2(s, µs)−N2(s, µ̃s)‖BL‖Pt−sφ‖W 1,∞ ds

which can be bounded in a similar way as I2 and I4 above but using standard prop-

erties of t. We obtain

‖Γ2(µ)t − Γ2(µ̃)t‖BL ≤ ‖µ2
0 − µ̃2

0‖BL + LNR

∫ t

0

‖µs − µ̃s‖BL ds.

Hence, we are able deduce (35). �

Lemma 6.4. For T small enough (depending on ‖µ0‖TV only), Γ(X) ⊂ X and Γ is

a strict contraction in X.

Proof. Let µ ∈ X. In view of Lemma 6.3, we known that Γ(µ) is continuous. Let us

show that ‖Γ(µ)t‖TV ≤ 2‖µ0‖TV for t ∈ [0, T ]. Let R = 2‖µ0‖TV , so that ‖µt‖TV ≤ R,

and T 1
s,t := T v

1[µ]
s,t , T 2

s,t := T v
2[µ]

s,t . Notice that ‖N(t, µt)‖TV ≤ CN
R for t ∈ [0, T ]. For

φ ∈ C(Rd), ‖φ‖∞ ≤ 1, we have

|(Γ1(µ)t, φ)| ≤ |(µ1
0, φ ◦ T 1

t )|+
∫ t

0

|(N1(s, µs), φ ◦ T 1
s,t) ds

≤ ‖µ1
0‖TV ‖φ ◦ T 1

t ‖∞ +

∫ t

0

‖N1(s, µs)‖TV ‖φ ◦ T 1
s,t‖∞ ds

so that

‖Γ1(µ)t‖TV ≤ ‖µ1
0‖TV + CN

R T for t ∈ [0, T ].
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The same estimate holds true for ‖Γ3(µ)t‖TV . Concerning Γ2(µ) we have

|(Γ2(µ)t, φ)| ≤ |(µ2
0, Ptφ)|+

∫ t

0

|(N2(s, µs), Pt−sφ) ds

≤ ‖µ2
0‖TV ‖Ptφ‖∞ +

∫ t

0

‖N2(s, µs)‖TV ‖Pt−sφ‖∞ ds.

Using that ‖Ptφ‖∞ ≤ ‖φ‖∞ ≤ 1, we obtain

‖Γ2(µ)t‖TV ≤ ‖µ2
0‖TV + CN

R T for t ∈ [0, T ].

Thus, for any t ∈ [0, T ],

‖Γ(µ)t‖TV ≤ ‖µ0‖TV + 3CN
R T,

which is less than 2‖µ0‖TV choosing T such that 3CN
R T ≤ ‖µ0‖TV . In particular T

depend only on ‖µ0‖TV .

Let us now show that Γ is a strict contraction for T small. Consider µ, µ̃ ∈ X.

Since µ0 = µ̃0, Lemma 6.3 with R = 2‖µ0‖TV gives

‖Γ(µ)t − Γ(µ̃)t‖BL ≤ {2eC
v
Rt(LvR‖µ0‖TV +

CN
R L

v
R

Cv
R

+ LNR ) + LNR}
∫ t

0

‖µs − µ̃s‖BL ds

for any t ∈ [0, T ]. Then, it follows that

‖Γ(µ)− Γ(µ̃)‖X ≤ {2eC
v
RT (LvR‖µ0‖TV +

CN
R L

v
R

Cv
R

+ LNR ) + LNR}T‖µ− µ̃‖X .

Thus, we can choose T small enough depending only on R (and thus on ‖µ0‖TV ) so
that Γ is a strict contraction in X. �

It follows that Γ has a unique �xed-point in X. We deduce the existence and

uniqueness of a solution de�ned on a maximal time interval [0, T ∗) with T ∗ < ∞ i�

limt→T ∗− ‖µt‖TV =∞.

The continuity with respect to the initial condition follows from Lemma 6.3 and

Gronwall's inequality. Indeed if µ and µ̃ are two solutions de�ned on [0, T ] with initial

conditions µ0, µ̃0 satisfying

‖µt‖TV , ‖µ̃t‖TV ≤ R for t ∈ [0, T ],

then Lemma 6.3 gives

‖µt − µ̃t‖BL ≤ A(t) +B(t)

∫ t

0

‖µs − µ̃s‖BL ds

with

A(t) = eC
v
Rt‖µ0 − µ̃0‖BL, B(t) = {2eCv

Rt(LvR‖µ0‖TV +
CN
R L

v
R

Cv
R

+ LNR ) + LNR}.
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Since A is non-decreasing, Gronwall's inequality gives

‖µt − µ̃t‖BL ≤ A(t) +B(t)

∫ t

0

A(s)e
∫ t
s B ds ≤ A(t)

(
1 +B(t)

∫ t

0

e
∫ t
s B ds

)
=: r(t)‖µ0 − µ̃0‖BL

which is (12).

7. Corollaries to the Main Result and Remarks

Theorem 3.1 covers a general birth source term of the form

(36) N(t, µ) =

∫
Rd

η(t, x, µ) dµ(x)

where η(t, x, µ) is a measure modeling the birth rate of an individual located at x ∈ Rd

at time t. Then N(t, µ) represents the distribution of all the o�spring at time t of a

population distributed according to a measure µ. This kind of source term has been

considered in [10].

Under suitable assumptions on η we can verify that N(t, µ) is well-de�ned as a

Bochner integral, is continuous in (t, µ) and satis�es (N1) and (N2):

Corollary 7.1. Suppose that η : [0,+∞)×Rd ×Mb(Rd)→Mb(Rd) satis�es that for

any R > 0 there exists CR > 0 such that for any t ≥ 0, x, x̃ ∈ Rd and µ, µ̃ ∈Mb,R(Rd),

(η1) ‖η(t, x, µ)‖TV ≤ CR,

(η2) ‖η(t, x, µ)− η(t, x, µ̃‖BL ≤ CR‖µ− µ̃‖BL,
(η3) ‖η(t, x, µ)− η(t, x̃, µ‖BL ≤ CR|x− x̃|,
(η4) the map t→ η(t, x, µ) is continuous.

Then the integral in (36) is a Bochner integral inMb(Rd), the completion ofMb(Rd)

under the BL norm. Moreover, for any t ≥ 0 and any µ ∈Mb(Rd),

(37) (N(t, µ), φ) =

∫
Rd

(η(t, x, µ), φ) dµ(x) for any φ ∈ L∞(Rd),

and N(t, µ) is continuous in (t, µ) and satis�es (N1) and (N2).

Proof. We �rst verify thatN(t, µ) is well-de�ned as Bochner integral inMb(Rd) follow-

ing [22]. We only sketch the proof since more details are given in corollary 4.1. Since

Mb(Rd) is separable we have to prove that (i) ‖η(t, x, µ)‖BL is |µ|-integrable which is

obvious by (η1), and that (ii) the map x → η(x, t, µ) is weakly measurable i.e., ac-

cording to [22][Appendix C1], that for any φ ∈ L∞(Rd) the map F (x) := (η(t, x, µ), φ)

is measurable. This can be done exactly as in the proof of Corollary 4.1 by consid-

ering Fε(x) := (η(t, x, µ), φε) with φε := φ ∗ ρε where ρε are the standard molli�ers.
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Then Fε is continuous by (η3) and Fε(x) → F (x) for any x ∈ Rd by the dominated

convergence theorem. The measurability of F follows.

Relation (37) is proved as in Corollary 4.1. In particular, it follows that

(38) ‖N(t, µ)‖TV ≤
∫
Rd

‖η(t, x, µ)‖TV d|µ|(x).

Hence, we deduce that N satis�es (N2) using (η1).

We now verify that N satis�es (N1). We have

‖N(t, x, µ)−N(t, x, µ̃)‖BL

≤
∫
Rd

‖η(t, x, µ)− η(t, x, µ̃)‖BL d|µ|(x) +
∥∥∥∫

Rd

η(t, x, µ̃) d(µ− µ̃)(x)
∥∥∥
BL

=: A+B.

By (η2) we have

A ≤ ‖µ‖TVCR‖µ− µ̃‖BL ≤ RCR‖µ− µ̃‖BL.

To estimate B, take φ ∈ W 1,∞(Rd), ‖φ‖W 1,∞ ≤ 1, and denote F (x) := (η(t, x, µ̃), φ).

Then

|F (x)| ≤ ‖φ‖∞‖η(t, x, µ̃)‖TV ≤ CR

by (η1). Moreover for any x, x̃ ∈ Rd,

|F (x)− F (x̃)| = |(η(t, x, µ̃)− η(t, x̃, µ̃), φ)| ≤ ‖φ‖W 1,∞‖η(t, x, µ̃)− η(t, x̃, µ̃)‖BL ≤ CR|x− x̃|

by (η3). Thus F is bounded Lipschitz with ‖F‖W 1,∞ ≤ CR. Hence

|(
∫
Rd

η(t, x, µ̃) d(µ− µ̃)(x), φ)| = |
∫
Rd

F (x) d(µ− µ̃)(x)| ≤ ‖F‖W 1,∞‖µ− µ̃‖BL

≤ CR‖µ− µ̃‖BL.

Therefore, B ≤ CR‖µ− µ̃‖BL and we obtain that N satis�es (N1).

We �nally show that N is continuous in (t, µ). To this end, we write

‖N(t, µ)−N(t̃, µ̃)‖BL ≤ ‖N(t, µ)−N(t̃, µ)‖BL + ‖N(t̃, µ)−N(t̃, µ̃)‖BL

≤
∫
Rd

‖η(t, x, µ)− η(t̃, x, µ)‖BL d|µ|(x) + CR‖µ− µ̃‖BL

where we used (N1). Moreover, the integral in the right-hand-side goes to 0 as t̃→ t by

the dominated convergence theorem in view of (η4) and (η1) (to bound the integrand

by 2CR). �

Two examples are worth mentioning. The �rst one includes mutation by taking

η(t, x, µ) = η(x) = χ(x− y)dy where χ : Rd → R. Then for any test-function φ,

(N(t, µ), φ) =

∫
Rd

(η(x), φ) dµ(x) =

∫
Rd

φ(y)

∫
Rd

χ(x− y) dµ(x) dy = (χ ∗ µ, φ)
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Hence, N(t, µ) = χ∗µ. This models the fact that the o�sping of an individual located

at x is distributed around x according to χ(x−y). Assuming that χ is integrable and

globally Lipschitz function, it is easily seen that assumptions (η1)− (η4) are satis�ed.

Another interesting case corresponds to an absence of mutation: the entire o�spring

of an animal at x stays at x. This can be modeled taking η(t, x, µ) = N̄(t, µ)δx where

N̄(t, µ) ∈ R. In this case N(t, µ) = N̄(t, µ)
∫
Rd δx dµ(x) = N̄(t, µ)µ. Indeed, we may

even consider a slightly more general source term of the form N(t, µ) = N̄(t, x, µ)µ.

Consider the special case where the source terms Nk(t, µt), k = 1, 2, 3, have the

form of rates namely

(39) Nk(t, µt) = N̄k(t, ·, µt)µkt ,

where

N̄k : R+ × Rd ×Mb(Rd)3 → R k = 1, 2, 3.

De�nition (39) means that for any time t > 0 and any µ ∈ Mb(Rd)3, the measure

Nk(t, µ) is de�ned by

(Nk(t, µ), φ) =

∫
Rd

φ(x)N̄k(t, x, µ) dµ(x)

for any test-function φ. The following corollary shows that under some assumptions on

N̄k, the system (8) has a unique solution which is nonnegative if the initial measures

µk0 are non-negative:

Corollary 7.2. (Nonnegativity of solutions) Assume that the vector-�elds vi, i =

1, 2, 3, are as in Theorem 3.1 and that the source terms Nk(t, µt) can be written as

rates as in (39). Suppose that N̄k, k = 1, 2, 3, are continuous in (t, x, µ) and for

any R > 0, there exist LNR , C
N
R > 0 such that for any (t, x) ∈ R × Rd and any

µ, µ̃ ∈Mb,R(Rd)3 the following is satis�ed:

(N1') |N̄k(t, x, µ)− N̄k(t, x, µ̃)| ≤ LNR‖µ− µ̃‖BL,
(N2') ‖N̄k(t, ·, µ)‖W 1,∞ ≤ CN

R .

Then, given initial condition µk0, k = 1, 2, 3, where each µk0 is a non-negative measure,

the system (8) has a unique solution (µ1
t , µ

2
t , µ

3
t ) de�ned in [0, T ∗) where µkt is a non-

negative measure for each k = 1, 2, 3 and any t ∈ [0, T ∗).

Proof. It is easily seen that under the assumptions made on N̄k that each Nk is

continuous and satis�es assumptions (N1) and (N2). We then know by Theorem 3.1

that the system (8) has a unique solution µt de�ned on some time interval [0, T ∗).
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Letting ck(t, x) = N̄k(t, x, µt) the system becomes

∂tµ
1
t +∇ · (v1[µt]µ1

t ) = c1(t, x)µ1
t ,

∂tµ
2
t −∆µ2

t = c2(t, x)µ2
t ,

∂tµ
3
t +∇ · (v2[µt]µ3

t ) = c3(t, x)µ3
t .

(40)

Direct calculations show that the solutions µ1
t , µ

2
t and µ

3
t are given by

(41) µkt = exp
(∫ t

0

ck(s, T v
k[µ]

t,s (.)) ds
)

(T v
k[µ]

0,t ]µk0), k = 1, 3,

where T vks,t is the �ow associated with the vector-�eld vk[µ], and

µ2
t = exp

(∫ t

0

c2(s) ds
)

(Kt ∗ µ2
0).

Here (41) means that for any test-function φ,∫
Rd

φ dµkt =

∫
Rd

φ(T v
k[µ]

0,t (x))exp
(∫ t

0

ck(s, T v
k[µ]

0,s (x)) ds
)
dµk0

(where we used the fact that Tt,s ◦T0,t = T0,s). Hence, it follows that if µk0, k = 1, 2, 3,

are non-negative measures then µkt , k = 1, 2, 3, are non-negative for any t ≥ 0. �

Remark 7.1. From Corollary 7.2 and its proof, it is clear that if µk0, k = 1, 2, 3,

are probability measures and there are no source terms in system (8) (i.e., Nk = 0,

k = 1, 2, 3), then for any t ∈ [0, T ], µkt , k = 1, 2, 3, are also probability measures.

We now provide some conditions ensuring that the solution given by Theorem 3.1

de�ned in [0, T ∗) is indeed global, i.e., T ∗ = +∞.

Corollary 7.3. (Global existence of solutions) Assume that assumptions (V1) and

(N1) hold and that (V2) and (N2) are replaced by assumptions (V2�) and (N2�) given

by

(V2�) Lip(vi[µ]) ≤ C, i = 1, 2,

(N2�) ‖Nk(t, µ)‖TV ≤ C(1 + ‖µ‖TV ) for k = 1, 2, 3 and t ∈ R,

where the constant C is independent of µ. Then, for any initial condition µ0 ∈
Mb(Rd)3, system (8) has a unique solution which is de�ned on [0,+∞).

Proof. Notice �rst that (N2�) implies (N2) and also that (V2�) implies (V2) (the fact

that ‖vi[µ]‖∞ ≤ Cv
R follows from (V1) with µ̃ = 0). Given initial conditions µ0, we

then know that there exists a solution de�ned over a maximal interval time [0, T ∗).

Suppose T ∗ < +∞. Then we know that ‖µt‖TV → +∞ as t → T ∗−. Notice that

the vector-�eld (t, x) → vi[µt](x) is continuous and globally Lipschitz by (V2�) so
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that the measures T v
1[µ]

t ]µ1
0 and T v

2[µ]
t ]µ3

0 exist for all time. Since µt = Γ(µ)t (the

de�nition of Γ is given in Section 6) we have

‖µt‖TV =
∑
k

‖Γk(µ)t‖TV

≤ ‖T v
1[µ]

t ]µ1
0‖TV + ‖T v

2[µ]
t ]µ3

0‖TV + ‖Ptµ2
0‖L1

+

∫ t

0

‖T v
1[µ]

s,t ]N1(s, µs)‖TV + ‖T v
2[µ]

s,t ]N3(s, µs)‖TV + ‖Pt−sN2(s, µs)‖L1 ds

≤ ‖µ0‖TV +

∫ t

0

∑
k

‖Nk(s, µs)‖TV ds

≤ ‖µ0‖TV + 3Ct+ 3C

∫ t

0

‖µs‖TV ds.

Gronwall inequality gives

‖µt‖TV ≤ (‖µ0‖TV + 3Ct)e3Ct ≤ (‖µ0‖TV + 3CT )e3CT

so that ‖µt‖TV is bounded near T ∗, a contradiction. �

Remark 7.2. Source terms satisfying conditions in Corollaries 7.2 and 7.3 arise

in biologically relevant applications including the following classical source term in

population dynamics:

a. Holling type functions [32] where, for example, for k = 1, 2, 3

N̄k(t, x, µ) = N̄k(µ) =
1

1 + γk
∑3

j=1(
∫
Rd wj(y)dµj(y))+

for w ∈ W 1,∞(Rd) and a nonnegative constant γk. Here, x+ = max{x, 0}.
Clearly, |N̄k(µ)| ≤ 1. Thus, (N2') and (N2�) hold. To show that (N1')

holds, using the notation (µj, wj) =
∫
Rd w

j(y)dµj(y)) and that |x+ − y+| ≤
|x− y| for any x, y ∈ R, we have for any µ, µ̃ ∈Mb(Rd) that

|N̄k(µ)− N̄k(µ̃)| ≤
γk
∑3

j=1 |(µj, wj)+ − (µ̃j, wj)+|
(1 + γk

∑3
j=1(µ

j, wj)+)(1 + γk
∑3

j=1(µ̃
j, wj)+)

≤ γk
3∑
j=1

|(µj, wj)− (µ̃j, wj)|

≤ γk‖w‖W 1,∞‖µ− µ̃‖BL.

This establishes the continuity of N̄k and assumption (N1').

b. Ricker type functions [46] where, for example, for k = 1, 2, 3

N̄k(t, x, µ) = N̄k(µ) = exp
(
− γk

3∑
j=1

(∫
Rd

wj(y)dµj(y)
)
+

)
,
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for w ∈ W 1,∞(Rd) and a nonnegative constant γk.

Clearly, |N̄k(µ)| ≤ 1. Hence, (N2') and (N2�) holds. To show that (N1')

holds, let µ, µ̃ ∈ Mb,R(Rd). For any x ∈ R between −γk
∑3

j=1(µ
j, wj)+ and

−γk
∑3

j=1(µ̃
j, wj)+, i.e.,

x = −θγk
3∑
j=1

(µj, wj)+ − (1− θ)γk
3∑
j=1

(µ̃j, wj)+, θ ∈ [0, 1],

we have

|x| ≤ γk
3∑
j=1

|(µj, wj)|+ |(µ̃j, wj)| ≤ γk
3∑
j=1

‖wj‖∞(‖µj‖TV + ‖µ̃j‖TV )

≤ 2Rγk
3∑
j=1

‖wj‖∞

Thus

|N̄k(µ)− N̄k(µ̃)| ≤ exp
(

2Rγk
3∑
j=1

‖wj‖∞
)
γk

3∑
j=1

|(µj, wj)+ − (µ̃j, wj)+|

≤ LRN‖µ− µ̃‖BL.

Hence, assuming vi, i = 1, 2, satisfy (V2�), then our results guarantee the existence

of a global nonnegative solution for such source terms. Also, since the solution, µj,

j = 1, 2, 3, is nonnegative then (µj, wj)+ = (µj, wj).

We now give an example of a family of vector-�elds satisfying assumptions (V1)

and (V2) relevant in applications.

Remark 7.3. Keeping in mind the discussion leasding to the system (5) with the

vector �eld (6), it is natural to consider vector �elds v1 and v2 of the form

vk[µ](x) =

∫
Rd

K(x, y) dµ1(y) +

∫
Rd

K̃(x, y) dµ3(y) + T [µ2](x)

where K, K̃ : Rd × Rd → Rd and T [µ2] : Rd → Rd. If K, K̃ are bounded and globally

Lipschitz then the �rst two integrals satisfy assumptions (V1) and (V2). We now

want to de�ne T [µ2](x) so as to model chemotaxis. In a smooth setting we may let

T [µ2](x) ' ∇µ2 to account for the fact that the movement of cells is driven by the

gradient of the chemical. Since this is not adequate in our measure-valued setting, we

approximate ∇µ2 using an idea presented in [34]. Indeed the authors in [34] introduced

a non-local gradient of a function f by

(42)
◦
f (x) =

d

|Sd−1(0, 1)|ε

∫
Sd−1(0,1)

f(x+ εy)y dσ(y)
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for ε > 0. This is indeed an approximation of ∇f when f is C1 since in the limit as

ε→ 0 we have
◦
f (x) = ∇f(x) +O(ε). Let us rewrite (42) as

◦
f (x) =

d

|Sd−1(0, 1)|εd+1

∫
Sd−1(x,ε)

(z − x)f(z) dσSd−1(x,ε)(z).

Let gδ ∈ C∞(Rd) be radial nonnegative such that gδ(z)dz → σSd−1(0,1) as δ → 0. Then

gδ(
z−x
ε

)1
ε
dz → σSd−1(x,ε) as δ → 0. We thus have

◦
f (x) ' d

|Sd−1|εd+2

∫
Rd

(z − x)gδ(
z − x
ε

)f(z) dz =

∫
Rd

Kδ,ε(x, z) dµ2(z)

where µ2(z) = f(z)dz and Kδ,ε(x, z) = d
|Sd−1|εd+2 (z − x)gδ(

z−x
ε

). We thus propose the

following as an approximate non-local gradient of the measure µ2:

◦
µ2 (x) =

∫
Rd

Kδ,ε(x, z) dµ2(z).

We can then take T [µ2](x) = C× ◦
µ2 (x), where C is a constant. Assume for example

that gδ has compact support for any positive δ. Then given positive ε and δ, Kδ,ε is

bounded and globally Lipschitz, and so T satis�es (V1)-(V2).

We end this section with a brief comment concerning the numerical simulation of

a system like (8). This is an important issue from the point of view of applications.

Few numerical schemes have been studied in the framework of measure-valued solu-

tions, and all of them deal with a single transport equation with the exception of the

recent paper [11]. We mention the Escalator Box Train method [5],[11],[26], Particle-

Splitting method [12],[29], and a recently proposed �nite di�erence method [2] which

shows interesting properties in terms of velocity of convegence and accuracy.

Finally, we point out that under the assumption of Theorem 3.1, the solution µ2

of the di�usion equation is more regular than a mere measure due to the regularizing

e�ect of the heat operator:

Remark 7.4. It follows from the explicit expression (17) that the solution u of the

di�usion equation (15) satis�es u ∈ L∞(0, T ;L1(Rd)) for any T > 0. Moreover for

any p ≥ 1 and any t > 0,

‖Kt‖p ≤ Ct−
d
2
(1−1/p) and ‖∂xiKt‖p ≤ Ct−

d
2
(1−1/p)−1/2.

It then follows that u ∈ Ls(0, T ;W 1,p(Rd)) for any s, p ≥ 1 such that 2
s

+ d
p
> d + 1

with

(43) ‖u‖Ls(0,T ;W 1,p(Rd)) :=
(∫ T

0

‖u(t, ·)‖sW 1,p(Rd) dt
)1/s
≤ C(‖u0‖TV + ‖σ‖TV ).

To apply this estimate to µ2, notice �rst that since for any T < T ∗ there exists

R > 0 such that maxt∈0,T ] ‖µt‖TV ≤ R, we have maxt∈0,T ] ‖N2(t, µt)‖TV ≤ R′ thanks
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to assumption (N2). Thus the measure σ :=
∫ T
0
δs ⊗N2(s, µs) ds (see equation (19))

is bounded. It then follows from (43) that µ2 ∈ Ls(0, T ;W 1,p(Rd)) for any s, p ≥ 1

such that 2
s

+ d
p
> d+ 1 and for any T < T ∗.
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Appendix

Here we give a brief sketch of the proof of Proposition 4.1.

Sketch of Proof. We �rst verify that u(t, x) = (Ptu0)(x) + (K ∗σ)(t, x) is a solution

of (15). Notice that u ∈ L1(QT ) for any T > 0 since∫ T

0

∫
Rd

|u(t, x)| dtdx ≤
∫ T

0

∫
Rd

Pt|u0|(x) dxdt+

∫ T

0

∫ t

0

∫
Rd

∫
Rd

K(t− s, x− y)dxd|σ|(s, y)dt

≤ T (|u0|(Rd) + |σ|((0, T )× Rd)),

were we used that for any t > 0, ‖K(t, ·)‖1 = 1 and ‖Ptu0‖1 ≤ |u0|(Rd).

We can then verify that u veri�es (18), and thus solves (15). Indeed this follows

from the fact that for any T > 0,

(44)∫
Rd

φ(T, x)ũ(T, x)dx =

∫ T

0

∫
Rd

(∂s + ∆)φ(s, x)ũ(s, x)dsdx+

∫ T

0

∫
Rd

φ(s, x) dσ(s, x),

where ũ(t, x) := (K ∗ σ)(t, x) =

∫ t

0

∫
Rd

K(t− s, x− y) dσ(s, y), and

(45)

∫
Rd

φ(T, x)Ptu0(x)dx−
∫
φ(0, x) du0(x) =

∫ T

0

∫
Rd

(∂s + ∆)φ(s, x)Psu0(x)dsdx.

Both (44) and (45) are quite standard to prove.

We now verify that u(t) satis�es the intial condition in the measure sense:

(46) lim
t→0+

∫
Rd

φ(x)u(t, x)dx =

∫
Rd

φ du0 for any φ ∈ Cb(Rd)

if |σ|({0} × Rd) = 0. This follows from

(47) lim
t→0

∫
Rd

φ(x)Ptu0(x)dx =

∫
φ du0 and lim

t→0

∫
Rd

φ(x)ũ(t, x)dx = 0.

Indeed on the one hand,∣∣∣ ∫
Rd

φ(x)ũ(t, x)dx
∣∣∣ ≤ ‖φ‖∞

∫
Rd

∫ t

0

(∫
Rd

K(t− s, x− y)dx
)
d|σ|(s, y)

≤ ‖φ‖∞|σ|((0, t)× Rd)
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which goes to ‖φ‖∞|σ|({0} × Rd) = 0 as t→ 0. On the other hand the �rst limit in

(47) follows writing
∫
Rd φ(x)Ptu0(x)dx =

∫
Rd Ptφ du0 and passing to the limit using

the dominated convergence theorem noticing that (i) since φ ∈ Cb(Rd), we have

limt→0 Ptφ(x) = φ(x) for any x ∈ Rd (see e.g. [21]), and (ii) ‖Ptφ‖∞ ≤ ‖φ‖∞.

We �nally show that the measure u(t, x)dx is continuous in t for the weak conver-

gence, i.e.,

(48) lim
t′→t

∫
Rd

φ(x)u(t′, x)dx =

∫
Rd

φ(x)u(t, x)dx

for any φ ∈ Cb(Rd) and any t > 0 such that |σ|({t} × Rd) = 0. First∫
Rd

φPt′u0 dx =

∫
Rd

Pt′φ du0 →
∫
Rd

Ptφ du0 =

∫
Rd

φPtu0 dx

where we pass to the limit using the Dominated Convergence Theorem as before.

Moreover, assuming w.l.o.g. t < t′,∫
Rd

φ(x)ũ(t′, x)dx−
∫
Rd

φ(x)ũ(t, x)dx

=

∫ t

0

∫
Rd

Pt′−sφ(y)− Pt−sφ(y) dσ(s, y) +

∫ t′

t

∫
Rd

Pt′−sφ(y) dσ(s, y).

(49)

The second term on the right-hand side can be bounded by

(50) ‖Pt′−sφ‖∞|σ|([t, t′]× Rd) ≤ ‖φ‖∞|σ|([t, t′]× Rd).

Independently, for any 0 < δ < R < ∞, it is easily seen that there exists Lδ,R > 0

such that for any φ ∈ L∞ and t′, t ∈ [δ, R],

‖Pt′φ− Ptφ‖∞ ≤ Lδ,R‖φ‖∞|t′ − t|.

We then bound the �rst term in (49) as follows∫ t−δ

0

∫
Rd

|Pt′−sφ(y)− Pt−sφ(y)| d|σ|(s, y) +

∫ t

t−δ

∫
Rd

|Pt′−sφ(y)− Pt−sφ(y)| d|σ|(s, y)

≤ Lδ,R|t− t′||σ|(Q) + 2‖φ‖∞|σ|([t− δ, t]× Rd)

≤ Lδ,R|t− t′||σ|(Q) + oδ(1),

where oδ(1) → 0 as δ → 0 uniformly in t′. Plugging this last inequality and (50)

into (49), we deduce (48) taking �rst take δ small enough and then t′ → t. Thus

u(t, x) = (Ptu0)(x) + (K ∗ σ)(t, x) is a solution of (15).

We now prove the uniqueness using an idea from [7]. To this end, it su�ces to

verify that the zero function is the only solution to (15) with u0 = σ = 0. Let u be

such a solution, in particular u ∈ L1(QT ) for any T > 0. In view of (16),∫∫
QT

u(t, x)(∂t + ∆)φ(t, x) dtdx = 0 for any φ ∈ C1,2
c ([0, T ]× Rd), φ(T, ·) = 0.
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We can in fact take any φ ∈ C1,2([0, T ]×Rd) with bounded derivatives and φ(T, ·) = 0.

Given ζ ∈ C∞c (QT ) let φ be the solution to

(∂t + ∆)φ = ζ in QT with ζ(T, ·) = 0

given by φ(t, x) = (K ∗ ζ̃)(t, x), ζ̃(t, x) = −ζ(T − t, x). Then φ ∈ C1,2([0, T ] × Rd)

with bounded derivatives and φ(T, ·) = 0. It follows that
∫∫

QT
uζ dtdx = 0 for any

ζ ∈ C∞c (QT ), so that u = 0 in QT .
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